

geotechnical

environmental

Services completed for this site

Lot Classifications

Site Contamination Report

E: info@enviroseer.com.au http://www.enviroseer.com.au/

UWastewater Management Report

54 Wiare Cct

Orange NSW 2800 ABN: 57 021 223 814 P: 0428 619 282

SITE CONTAMINATION REPORT

PREPARED FOR: SITE ADDRESS:

MELROSS ENTERPRISES LOT 1 DP 1202085 323 BOOROWA STREET YOUNG NSW 2594

1.0 SUMMARY

An Environmental Assessment was conducted by Envirowest Consulting P/L and a Remediation Action Plan with Validation component cleaned up the fibro shed and the diesel impacted soil about the former Above ground Storage Tanks. These were reported to address most of the former DPI machinery storage and chemical store. Excluded was a <1000 m² area of a weatherboard bungalow at the SW of the property. The bungalow was demolished at some point after 2012. The southmost 1800 m² was assessed to cover the contingency of soil graded E and N from the area excluded by the original study.

Nine soil samples were collected from 150 mm intervals to a depth of 0-0.35 m depending on actual topsoil depth. This was achieved using a mechanical continuous flight auger to break the relatively shallow and compacted overburden. These soil samples were composited in threes. This is typically avoided for hydrocarbons, but acceptable for pesticides and heavy metals. The rational was that discrete sampling of the latter could be implemented if required. Concentrations of all CoPC were well below commercial thresholds indicating more than acceptable concentrations of CoPC for a commercial development.

Revision: 01/07/2021 Site Test: 28/02/2025 Lab Test: 11/03/2025 Job Number: 25016a

DRIVER Section 4.15 EP&A 1979 SEPP 55

CSM

Source: 1800 m² former machine & chem store, house Pathway: ingestion Receptor: Infants

SAP Sample density: 9/1800m² Building Envelopes 1 Composite samples 3 Replicates 0 Area 0.018 ha

CoPc As Cd Cr Cu Hg Ni Pb Zn OC pesticides, PCBs TRH BTEX PAH

2.0 SITE LOCATION YOUNG

LOT 1 DP 1202085 323 BOOROWA STREET YOUNG NSW 2594

3.0 SAMPLING RATIONALE AND DESIGN

Aerial Photography

29 January 1969

20 December 1997

Aerial photography shows that the commercialization of Lot 1 DP 1202085 has occurred over the past 25 years. Prior to the turn of this century, the site was residential. The photography is relatively poor definition and the previous consultants have addressed the infrastructure that emerged with commercial buildings and fuel storage over the past 25 years.

CSM Conceptual Site Model The Conceptual Site Model is simplified by the previous detailed investigation, remediation validation and extensive reporting conducted by Envirowest Consulting P/L.

The CSM is further simplified by the distal of ground water sources. There are five bores within 0.5 km of the BE. Four bores are <10 m deep and one appears to intercept vadose water at 3.9 m bgsl. The fifth yields .0.6L/s with a 14 m SWL. Soil samples were thus surficial. Further the subsamples were composited. This is typical for metals and pesticides, but abnormal for hydrocarbons. Hydrocarbons were a qualitative measure since the previous investigation validated the Above Ground Storage Tank area at the E of the lot if the soil was spread to strip during the remediation phase.

CoPC was limited to topsoil immediately above the graded fill. The fill was moved about during past works and it is the silty organic topsoil layer that has the greatest potential for accumulation and absorption of resideues of pesticides, metals and hydrocarbons. topsoil residues are indicated to be minimal. The potential contaminants deriving from the AGST are: Total Recoverable Hydrocarbons; Monocyclic and Polycyclic Aromatic Hydrocarbons and Lead

There are further issues that significantly simplify the CSM.

- 1) No aerial evidence of further tank locations (although the pixilation is fair at best)
- 2) No evidence of Underground Storage Tanks (USTs)
- 3) No aerial evidence of rural vehicle accumulation.
- 4) No evidence of greater aggregation of buildings

SAP Sampling & Analysis Plan	Sampling and Analysis Planning addressed the area of the dwelling omitted from the previous validation, with some overlap to account for omissions. Borehole placement was both judgemental and generally systematic, and minimal for statistically meaning calculations. Nine soil samples were taken from 150 mm topsoil depth intervals at a rate of 1/200 m ² . The rationale was that judgemental sampling of this specific and small areas ought to provide a worst-case scenario if indeed any should exist. Three composite samples were prepared, no replicates. Samples were dispatched with chain-of custody documentation for CoPc Analysis relevant for the recommendations and CoPc of previous reports.
CoPC Contaminants of Potential Concern	Contaminants of Potential Concern are heavy metals (As Cd. Cr, Cu, Hg, Ni, Pb, Zn); general organochlorine pesticides and hydrocarbons: specifically Total Recoverable Hydrocarbons (TRH) which are essentially aliphatic linear and branched alkanes, alkenes and alkynes; Monocyclic Aromatic Hydrocarbons (MAH) the key compounds being Benzene, Toluene, Ethylbenzene and Xylenes; as well as Polycyclic Aromatic Hydrocarbons (PAH) most common being Naphthalene and most environmentally

problematic being benzo-a-pyrene (BaP); as well as Polycyclic Benzene Hydrocarbons (PCB)

This suite is preliminary and can be made more specific, should the preliminary data justify further investigation. Detection of volatile compounds at concentrations above threshold would trigger discrete sampling at multiple depth intervals - a more complex investigation.

Geology &Geology is granodiorite. Topsoil is dark yellowish brown sandy, clayey gravel. There are 5Hydrogeologyregistered bores within 0.5 km of the site. One is yielding; three are dry. SWL is 4-14 m bgslSite HistorySite was a residential building and surrounds at the SW corner of a lot formerly occupied by
NSW Agriculture/ Soil Conservation for depot storing fertilizers and above Ground Fuelling.
The house was omitted from the Envirowest validation. The footprint and surrounds of the
demolished building were therefore checked to supplement the partial investigation.

4.0 RESULTS

METALS	ARSENIC	CADMIUM	CHROMIUM	COPPER	LEAD	MERCURY	NICKEL	ZINC
mg/kg	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn
C01	<4	<0.4	20	14	26	< 0.1	11	67
C02	5	0.6	27	36	160	< 0.1	17	330
C03	<4	<0.4	22	12	24	< 0.1	19	77
HIL A	100	20	100	7000	300	10	400	8000
HIL D	3000	800	3000	250000	1500	200	4000	400000
95% UCL/CA-HIL A	16%	10%	87%	2%	201%	3%	17%	15%
95% UCL/CA-HILD	1%	0%	3%	0%	40%	0%	2%	0%

Heavy Metals: Lead (Pb)

Discussion

Had the site been for a residential development, further investigation of the soil profile would have been likely. If C02 included three samples of comparable Lead (pb) concentration. The HIL A would not be exceeded. Compositing increases uncertainty and the threshold is decreased proportionately. Re-sampling of the C2 area, about the house would have been conducted and a greater number of discrete samples analysed. The table shows that the Commercial Threshold for Lead is 5-fold that of the Residential HIL A. The data indicate there is a 95% probability that the arithmetic average concentration of heavy metals will not exceed respective human health investigation levels for commercial development. The Development Application Requirements are therefore met.

< 0.2

<0.2

<25

<0 5

<0.5

<0.

<2

<1

<1

Total Recoverable
Hydrocarbons (TRH)
Volatile Fraction including
vTRH & MAH &
Naphthalene
Discussion

TRH Semi Volatile and Non-volatile Fraction:

0-150 mm Topsoil Discussion C1

C7

<25

<25

<25

<25

No statistical analysis of the concentrations of vTRH and BTEX is warranted. None of the constituent compounds analysed was detected Limits of Reading (LOR) of the analytical methods used to quantify them. The LORs are at or below HSL-A residential thresholds. The complete lack of vTRH and BTEX indicates that if indeed there was a spill, it has likely aged and that the volatile compounds have been stripped and biodegraded with time.

TRH C ₁₀ -C ₁₄	TRH C ₁₅ -C ₂₈	TRH C ₂₉ -C ₃₆	TRH C29-C36	TRH C10-C14	H C ₁₀ -C _{16 - Naphtha}	TRH C ₁₆ -C ₃₄	TRH C34-C ₄₀	Total TRH C ₁₀₋₄₀
<50	<100	<100	<50	<50	<50	<100	<100	<50
<50	<100	<100	<50	<50	<50	130	<100	130
<50	<100	<100	<50	<50	<50	<100	<100	<50
HSL-A Residenti	al Low Density 0	-0.1 Clay			280			

The data indicate there is a 95% probability that the arithmetic average concentration of semi-volatile TRH in the topsoil at all locations will not exceed respective human health investigation levels for Commercial development. The fact that TRH corresponding to diesel and oil has been detected would certainly warrant a more thorough investigation had the development been residential. Compositing for hydrocarbons is not typical nor recommended. If it was, and the three contributing samples had only a single contaminated sample. We would have a 200 m² area of potential concern to be further tested. Considering the 3-fold sample dilution; the exceedance is still only 40% more than the most sensitive threshold.

OC Pesticides mg/kg	α+β+γ+δ ΒΗΟ	HCB	Heptachlor + Epoxide	Aldrin + Dieldrin	a+g Chlordane
C1	<0.4	< 0.1	<0.2	< 0.1	< 0.1
C2	<0.4	< 0.1	<0.2	< 0.1	< 0.1
C3	<0.4	< 0.1	<0.2	< 0.1	< 0.1
HIL A		10	7	7	50
Oc Pesticides mg/kg	Endosulfan I + II + SO_4^{2-}	DDD + DDE + DDT	Endrin + Aldehyde	Methoxychlor	Mirex
C1	<0.3	< 0.1	<0.2	< 0.1	< 0.1
C2	<0.3	< 0.1	<0.2	< 0.1	< 0.1
C3	<0.3	< 0.1	<0.2	< 0.1	< 0.1
	300	260	10	400	10

The data indicate there is a 95% probability that the arithmetic average concentration of Organochlorine pesticides will not exceed respective human health investigation levels for residential development. This is because no pesticides were detected, and LOR should be one-order of magnitude below the most sensitive thresholds.

	0							
PCB				Aroclor				0.1
mg/kg	1016	1221	1232	1242	1248	1254	1260	Total PCBs
C1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
C2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
C3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
HIL A								1

The data indicate there is a 95% probability that the arithmetic average concentration of polychlorinated biphenyl compounds will not exceed respective human health investigation levels for residential development, and therefore commercial development

organocinorine	OC resultives mg/
Insecticides	C1
moconoraco	C2
	C3
	HIL A
	Oc Pesticides mg/
	C1
	C2
	C3
	HIL A
Discussion	The data indi
	Organochlori

Polychlorinated Biphenyl

Organochloring

Discussion

Polycyclic	POLYCYCLIC AROMATIC HYDROCARBONS	Acenaphthylene	Acenaphthene		Phenanthrene	Anthracene	Fluoranthene		Naphthalene
	C1	<0.1	< 0.1	< 0.1	0.1	<0.1	0.4	0.3	< 0.1
Hydrocarbons (PAH)	C2	<0.1	< 0.1	<0.1	<0.1	<0.1	0.2	0.2	< 0.1
riyulocarbolis (FAII)	C3	< 0.1	< 0.1	<0.1	0.1	<0.1	0.3	0.3	<0.1
	SHSL-DC: Soil Health Screening Levels for Dire	ct Contact (mg/kg) Resi	dential HSL-S Lov	v Density					1400
	POLYCYCLIC AROMATIC HYDROCARBONS	Benzo(a)anthracene	Chrysene	Benzo(b,j+k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenzo(a,h)anthracene	TOTAL PAH	B(a)p TEQ calc 0
	C1	0.1	0.1	0.3	0.2	0.2	<0.1	0.2	2
	C2	0.1	< 0.1	0.2	0.2	0.1	<0.1	0.1	1.3
		0.1	0.1	0.3	0.2	0.2	<0.1	0.1	1.6
	SHSL-DC: Soil Health Screening Levels for Dire	ct Contact (mg/kg) Resi	dential HSL-S Lov	v Density					
Discussion	The data indicate th	ere is a 9	5% prol	pability that	the arit	hmetic ave	rage conce	ntratio	n of
	PAH in will not exce	ed respec	tive hu	man health	investig	gation level	s for reside	ntial	
	development and th	erefore co	ommerc	ial develop	ment				
Abbreviations	AST Above-ground Stora	age Tank H	IL Health	Investigation	Level H	SL Health Sci	eening Level	GL Gu	ideline
	Threshold CAGL Comp	osite Adjust	ed Guide	line Level 959	% UCL 95	5% Upper Co	nfidence Limit	OCP	
	Organochlorine Pesticide	e OPP Organ	nophosph	ate Pesticides	5 LOR	Limit of Reco	rding		

5.0 CONCLUSIONS & RECOMMENDATIONS

Concentrations of Contaminants of Potential Concern in topsoil taken from the SW 1800 m² of the former Soil Conservation Depot Building on LOT 1 DP1202085, 323 Boorowa Street YOUNG NSW 2594 were below respective thresholds for Commercial Development .

The preliminary nature of the investigation is sufficient for the proposed development. A more detailed investigation of the former building BE would certainly be warranted should future residential development be proposed. Specifically discrete topsoil and subsoil samples at a density of 1/100 m2 for CoPc: svTRH, Lead and Zinc.

0.0	LUC		UN 3	NEIC	, H				
er	NIOS	eer							
6	eotechnic	al							
en	vironment	al							
Sample	Depth (m)	Alt (m)	Latitude	Longitude	Туре	Colour	Coarse Aggregate	Texture	Moisture
C1.1	0.1	463.3	34°30.907	148°28.500	silty clayey gravelly sand	dark brown	1-25 mm 25%	hard	damp
C1.2	0.1	457.4	34°30.901	148°28.487	silty gravelly clayey sand	dark yellowish brown	1-3 mm 40%	stiff	damp
C1.3	0.1	457.6	34°30.885	148°28.469	silty clayey gravelly sand	dark yellowish brown	1-4 mm 50%	firm	moist
C2.1	0.1	458.5	34°30.874	148°28.422	sandy clayey gravel	dark yellowish brown	1-4 mm 40%	vstiff	moist
C2.2	0.1	459.1	34°30.883	148°28.484	clayey gravelly silty sand	dark reddish brown	1-3 mm 80%	vstiff	damp
C2.3	0.1	458.6	34°30.899	148°28.502	silty claye gravelly sand	dark brown	1-4 mm 40% sileceous	vstiff	damp
C3.1	0.1	458.0	34°30.903	148°28.515	silty gravelly clayey sand	dark yellowish brown	1-30 mm 50%	hard	damp
C3.2	0.1	458.6	34°30.894	148°28.505	clayey sandy gravel	yellowish brown	1-8 mm 60%	hard	damp
C3.3	0.1	548.4	34°30.888	148°28.515	clayey sandy gravel	yellowish brown	1-8 mm 60%	hard	damp
SOOROL	BERGE PE	2	and the		0 0	00			
-		DF	754611		0	00	1 - get		

Date:

Customer Job:

Job Number:

Site Address:

28/02/2025

LOT 1 DP 1202085 323 BOOROWA

STREET YOUNG NSW 2594

501CO

25016

Borehole:

C01-03

Surface RL: Latitude: Longitude:

463.3 -34°30.740-907 148°28.472-502

Water	Depth (m)	DCP (blows)	PP (kPa)	Sample	Classification Code		Materia Descripti	l on		Moisture	Linear Shrinkage (%)	Liquid Limit (%)	Density Consistency	Fill
	0-0.2			C1.1 C1.2		Silty clayey gra Silty gravelly cla	avelly sand, dark b ayey sand, dark ye	rown, co.ag. 1-5 mm Illowish brown1-3 mm	25% 1 40%	Da Da			H St	
	.15-0.3 .2-0.35			C2.1 C2.2		Sandy clayey sandy Sandy clayey gra Clayey silty gravell	y sand, dark yellowish y sand, dark reddi	n brown, co.ag. 1-4 m h brown, co.ag. 1-4 m sh brown, co.ag. 1-3	m 40% mm 30%	M M M			F St F	
	.1-0.25 .1-0.25 1-0.25			C2.3 C3.1 C3.2		Silty clayey gra Silty gravelly claye	avelly sand, dark b y sand dk yellowis pravel, vellowish b	rown, co.ag. 1-4 mm h brown co.ag. 1-30 rown co.ag 1-8 mm	40% mm 50% 60%	M Da Da			F H H	
	.1-0.25			C3.3		Clayey sandy	gravel, yellowish b	rown, co.ag. 1-5 mm	50%	Da			H	
			WT – V	Vater Table	UTP	- Unable to pernit	rate D Penetro	CP – 9kg Dynami ometer	c Cone F	Penetror	neter		PP- Poc	ket
A	ID – Densi	ty Index vs	Approx. F	Penetrometer	results	SILTS	& CLAY – Cu vs /	Approx. Penetromete	r results		_			
	DENSITY		Density Index	Count (blows/	low 100mm)	CONSISTENCY	Undrained Shear Strength (kPa)	DCP Blow Count (blows/100mm)	PP Indi	Dial cator		MOI	STURE	
VI MD – VE	Very Loo L - Loose Medium De D - Dense) - Very Der	se nse ise	< 15 % 15 – 35 % 35 – 65 % 65 – 85 % > 65 – 85	% 1 % 3 % 9 % >	< 1 - 3 - 9 - 15 • 15	VS – Very Soft S – Soft F – Firm St – Stiff VSt – Very Stiff H – Hard	0 - 12 12 - 25 25 - 50 50 - 100 100 - 200 > 200	<1 1-2 2-3 3-5 5-8 >8	0 - 0.2 0.5 1.0 3.0 >	0.2 - 0.5 - 1.0 - 2.0 - 4.0 4.0		D M – W W _P - PI W _L – Li	– Dry • Moist – Wet astic Limit quid Limit	

7.0 COC

ENVIR	OLAB	СНА	IN O	F CUST	ODY -	C	ier	nt				Syd 12 Ph	iney La Ashley 02 991	<u>b</u> - Envi St, Cha 0 6200	irolab So tswood / sydne	ervices , NSW 20 ey@envir	067 olab.com.au
6301		ENVIF	GROUP - N	lational phone number 1300 42 43 44						Perth Lab - MPL Laboratories 16-18 Havden Crt Myaree, WA 6154							
Client: Env	iroseer				Client Projec	t Name	/ Nun	iber / Site e	tc (ie repo	ort ti	tle):	Ph	08 931	7 2505	/ lab@	mpl.com	.au
Contact Per	son: James Milson					327	Booro	wa Road YO	UNG NSV	v		Me	lbourn	e Lab -	Envirola	b Servic	es
Project Mgr	James				PO No.:	25017						1A Ph	Dalmo 03 976	re Drive 3 2500	e Scores / melbo	by VIC 3 ourne@e	179 nvirolab.com.au
Sampler: Ja	mes				Envirolab Qu	ote No.		see JERI	MY FAIRC	LOTH	27/2/24			041	Faulant	h Comis	
Address:	3004 Cargo Ro	oad CARGO	2800		Or choose: s Note: Inform I surcharges ap	tandar ab in ad	d / san Vance i	ne day / 1 d furgent turna	ay / 2 day	r / 3 nquire	day d -	20: Ph <u>Ad</u>	spane (a, 10-20 07 326 elaide (Office - Office -	Envirola / brisba	ab Servic yo, QLD ane@env ab Servic	es es
Phone:	NA	Mob:	04 2861 9	282	Report forma	it: esda	it / eqi	uis /				7a Ph	The Pa 0406 3	rade, N 50 706	lorwood / adela	l, SA 506 ide@env	7 /irolab.com.au
Email:	info@	envirosee	r.com.au		Lab Commen	ts:											
. 19 <u>8</u> - 19	Sample i	nformation	14. M	The second		ē.	i sta	مر بارد مر ارد. مرد ارد مر	Tests	Requ	ired	· • * • •	5			u. X	Comments
Envirolab Sample ID	Client Sample ID or information	Depth (m)	Date sampled	Type of sample	COMBO : 8 Metals As Cd Cr Cu Hg Ni Pb Zn + OC Pesticides +TRH + BTEX + PAH + PCB				6 		Er ROLAB Chats PI	virclab s 12 A vood NS : (02) 99	iervici shley : W 206 10 620	s 7 7			Provide as much information about the sample as you can
1	C1	0.15	28-Feb-25	soil	×				D T	ate I	Received; 7/	3/2	2				SILTY GRAVELLY CLAYEY SAND, dark yellowish brown co.ag. 1-3 mm 40% 457.6 34°30901 148°28487
2	C2	0.15	28-Feb-25	soll	x				R Te	eceiv emp:	ed By: Ko CocyAmbien	6°C					CLAYEY SILTY GRAVELLY SAND dark reddish brown, co.ag. 1-3 mm 30% 459.1 34*30883 148°28484
3	СЗ	0.15	28-Feb-25	soil	×				Se	oolin scurit	: Ice/icepaek V: Intact Brok	⊧n/Non∉					CLAYEY SANDY GRAVEL yellowish brown co.ag. 1-8 mm 40% 458.6 34°30894 148°28505
																<u> </u>	
Relinguishe	Relinquished by (Company): Enviroseer					(Comp	any):	ELS SY	2			Lab use only:					
Print Name	Print Name: James Milson					Print Name: Naty Wayne				Samples Received: Cool or Ambient (circle one)							
Date & Tim	Date & Time: 5/03/2025 17:00					Date & Time: 7/3/25 0900				Temperature Received at: 6° (if applicable)							
Signature:			Ø		Signature: Transported by: Hand delivered / courier					/ courier							

8.0 SAMPLE RECEIPT

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2087 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Enviroseer
Attention	James Milson
Sample Login Details	
Your reference	327 Boorowa Road Young NSW
Envirolab Reference	374956
Date Sample Received	07/03/2025
Date Instructions Received	07/03/2025
Date Results Expected to be Reported	14/03/2025
Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	3 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	6
Cooling Method	loe Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Invoice will be emailed separately. Results will be reported only if payment has been made. Details of analysis on the following page:

Sample ID	v TRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soll	PAHs in Soil	Organochlorine Pesticides in soil	PCBs in Soil	Acid Extractable metalsin soll
C1-0.15	1	1	1	1	1	1
C2-0.15	1	1	1	1	1	1
C3-0.15	1	1	1	1	1	✓

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.
Requests for longer term sample storage must be received in writing.
Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverabl metals and PFAS analysis where solids are included by default.
TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

9.0 CERTIFICATE OF ANALYSIS (KEY DATA)

CERTIFICATE OF ANALYSIS 374956

PO Box 2519, Orange, NSW, 2800

327 Boorowa Road Young NSW

Envirolab Services Pty Ltd ABN 37 112 335 545 12 Ashley 31 Chalswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Client Reference: 327 Boorowa Road Young NSW

/TRH(C6-C10)/BTEXN in Soil				
Dur Reference		374956-1	374956-2	374956-3
/our Reference	UNITS	C1	C2	C3
Depth		0.15	0.15	0.15
Date Sampled		28/02/2025	28/02/2025	28/02/2025
Type of sample		Soll	Soll	Sol
Date extracted	-	10/03/2025	10/03/2025	10/03/2025
Date analysed	-	11/03/2025	11/03/2025	11/03/2025
IRH Ce - Ce	mgikg	<25	<25	<25
IRH C6 - C10	maika	<25	<25	<25
TRH C ₆ - C ₁₀ less BTEX (F1)	maika	<25	<25	<25
Benzene	maika	<0.2	⊲0.2	<0.2
Foluene	maika	<0.5	<0.5	⊲0.5
Ethylbenzene	maika	<1	<1	<1
n+p-xylene	maika	<2	<2	<2
o-Xylene	mgikg	<1	<1	<1
Naphthalene	mgikg	<1	<1	<1
fotal +ve Xylenes	mgikg	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	101	101	103

Sample Details

Date samples received

Date completed instructio

Your Reference Number of Samples

Client Details Client

Attention Address

Analysis Details Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Enviroseer James Milson

3 Soil

ed 07/03/2025

ns rece

07/03/2025

Report Details		
Date results requested by	14/03/2025	
Date of Issue	10/04/2025	
NATA Accreditation Number 2901. This document shall not be reproduced except in full.		
Accredited for compliance with ISO/IEC 1	7025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Steven Luong, Senior Chemist Timothy Toll, Senior Chemist

Authorised By Nancy Zhang, Laboratory Manager

irolab Reference: 374956 Revision No: ROO

svTRH (C10-C40) in Soli our Reference

Depth

Date Sampled

Type of sample

Date extracted

Date analysed

TRH C10 - C14

TRH Cis - Cas

IRH Cas - Cas

TRH >C10-C10

TRH >C 10 -C 34

TRH >C_M-C₄₀

Total +ve TRH (C10-C36)

Total +ve TRH (>C10-C40)

Surrogate o-Terphenyl

TRH >C10-C10 less Naphthalene (F2)

C1

0.15

28/02/2025

Sol

10/03/2025

12/03/2025

<50

<100

<100

<50

<50

<50

<100

<100

<50

89

C2

0.15

28/02/2025

Soli

10/03/2025

12/03/2025

<50

<100

<100

<50

<50

<50

130

<100

130

93

C3

0.15

28/02/2025

Sol

10/03/2025

12/03/2025

<50

<100

<100

<50

<50

<50

<100

<100

<50

88

UNITS

maika

maika

maika

maika

maika

maika

meike

maika

maika

%

Page | 1 of 18

ab Reference: 374956 on No: R00 Revision No:

Page | 2 of 18

Client Reference: 327 Boorowa Road Young NSW

PAHs in Soli				
Our Reference		374956-1	374956-2	374956-3
Your Reference	UNITS	C1	C2	C3
Depth		0.15	0.15	0.15
Date Sampled		28/02/2025	28/02/2025	28/02/2025
Type of sample		Soll	Soll	Soll
Date extracted		10/03/2025	10/03/2025	10/03/2025
Date analysed	-	11/03/2025	11/03/2025	11/03/2025
Naphthalene	maika	<0.1	<0.1	⊲0.1
Acenaphthylene	maika	<0.1	<0.1	<0.1
Acenaphthene	mgikg	<0.1	<0.1	<0.1
Fluorene	maika	<0.1	<0.1	<0.1
Phenanthrene	maika	0.1	<0.1	0.1
Anthracene	maika	<0.1	⊲0.1	<0.1
Fluoranthene	maika	0.4	0.2	0.3
Pyrene	maika	0.3	0.2	0.3
Benzo(a)anthracene	maika	0.1	0.1	0.1
Chrysene	maika	0.1	<0.1	0.1
Benzo(b,j+k)fluoranthene	maika	0.3	0.2	0.3
Benzo(a)pyrene	maika	0.2	0.2	0.2
ndeno(1,2,3-c,d)pyrene	maika	0.2	0.1	0.2
Dibenzo(a,h)anthracene	maika	<0.1	<0.1	<0.1
Benzo(g,h,l)perylene	maika	0.2	0.1	0.1
Total +ve PAH's	mgikg	2.0	1.3	1.6
Benzo(a)pyrene TEQ caic (zero)	maika	<0.5	<0.5	⊲0.5
Benzo(a)pyrene TEQ caic(haif)	maika	<0.5	<0.5	⊲0.5
Benzo(a)pyrene TEQ calc(PQL)	maika	<0.5	<0.5	⊲0.5
Summate n-Temberyl-d14	%	118	115	110

Envirolab Refe ce: 374956 Revision No: R00

Page | 3 of 18 Envirolab Reference: 374956 Revision No:

R00

Page | 4 of 18

Address:

Client Reference: 327 Boorowa Road Young NSW

Organochiorine Pesticides In soil				
Our Reference		374956-1	374956-2	374956-3
Your Reference	UNITS	C1	C2	C3
Depth		0.15	0.15	0.15
Date Sampled		28/02/2025	28/02/2025	28/02/2025
Type of sample		Soll	Soll	Sol
Date extracted	-	10/03/2025	10/03/2025	10/03/2025
Date analysed	•	11/03/2025	11/03/2025	11/03/2025
alpha-BHC	maika	<0.1	<0.1	<0.1
нсв	maika	⊲0.1	⊲0.1	⊲0.1
beta-BHC	maika	<0.1	<0.1	<0.1
gamma-BHC	maika	⊲0.1	⊲0.1	⊲0.1
Heptachior	maika	<0.1	<0.1	<0.1
delta-BHC	maika	<0.1	<0.1	<0.1
Aldrin	maika	<0.1	<0.1	<0.1
Heptachlor Epoxide	maika	<0.1	<0.1	⊲0.1
gamma-Chlordane	maika	<0.1	<0.1	<0.1
alpha-chlordane	maika	<0.1	<0.1	<0.1
Endosulfan I	maika	<0.1	<0.1	<0.1
pp-DDE	maika	<0.1	<0.1	<0.1
Dieldrin	maika	<0.1	<0.1	<0.1
Endrin	maika	<0.1	<0.1	⊲0.1
Endosulfan II	maika	<0.1	<0.1	⊲0.1
pp-DDD	maika	<0.1	<0.1	<0.1
Endrin Aldehyde	maika	<0.1	<0.1	<0.1
pp-DDT	maika	<0.1	<0.1	⊲0.1
Endosulfan Sulphate	maika	<0.1	<0.1	<0.1
Methoxychlor	maika	⊲0.1	⊲0.1	⊲0.1
Mirex	maika	<0.1	⊲0.1	<0.1
Total +ve DDT+DDD+DDE	maika	⊲0.1	⊲0.1	⊲0.1
Surrogate 4-Chloro-3-NBTF	%	135	128	131
Total Positive Aldrin+Dieldrin	maika	<0.1	<0.1	<0.1

Client Reference: 327 Boorowa Road Young NSW

PCBs in Soli				
Our Reference		374956-1	374956-2	374956-3
Your Reference	UNITS	C1	C2	C3
Depth		0.15	0.15	0.15
Date Sampled		28/02/2025	28/02/2025	28/02/2025
Type of sample		Sol	Soll	Soll
Date extracted	•	10/03/2025	10/03/2025	10/03/2025
Date analysed	•	11/03/2025	11/03/2025	11/03/2025
Arodor 1016	maika	<0.1	⊲0.1	<0.1
Arodor 1221	maika	<0.1	<0.1	<0.1
Arodor 1232	maika	<0.1	<0.1	<0.1
Arodor 1242	maika	<0.1	⊲0.1	<0.1
Arodor 1248	maika	<0.1	⊲0.1	⊲0.1
Arodor 1254	mgikg	<0.1	⊲0.1	<0.1
Arodor 1260	mgikg	⊲0.1	⊲0.1	<0.1
Total +ve PCBs (1016-1260)	mgikg	<0.1	⊲0.1	⊲0.1
Surrogate 2-Fluoroblphenyl	%	124	122	119

Envirolab Reference: 374958 Revision No: R00

Page | 5 of 18 Envirolab Reference: 374956 Revision No: R00

Page | 6 of 18

Client Reference: 327 Boorowa Road Young NSW

Moisture				
Our Reference		374956-1	374956-2	374956-3
Your Reference	UNITS	C1	C2	C3
Depth		0.15	0.15	0.15
Date Sampled		28/02/2025	28/02/2025	28/02/2025
Type of sample		Sol	Soli	Soli
Date prepared		10/03/2025	10/03/2025	10/03/2025
Date analysed	-	11/03/2025	11/03/2025	11/03/2025
Moisture	%	5.8	6.9	3.3

Client Reference: 327 Boorowa Road Young NSW

Acid Extractable metals in soil				
Our Reference		374956-1	374956-2	374956-3
Your Reference	UNITS	C1	C2	C3
Depth		0.15	0.15	0.15
Date Sampled		28/02/2025	28/02/2025	28/02/2025
Type of sample		Soll	Soll	Soll
Date prepared	-	10/03/2025	10/03/2025	10/03/2025
Date analysed	-	10/03/2025	10/03/2025	10/03/2025
Arsenic	maika	<4	5	<4
Cadmium	maika	<0.4	0.6	<0.4
Chromium	maika	20	27	22
Copper	maika	14	36	12
Lead	mgikg	26	160	24
Mercury	maika	⊲0.1	<0.1	⊲0.1
Nickel	maika	11	17	19
Zinc	maika	67	330	77

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
	Total Phosphate determined stochiometrically from Phosphorus (assumed to be present as Phosphate).
	Where sails (oxides, chiorides etc.) are calculated from the element concentration stoichiometrically there is no guarantee that the sait form is completely soluble in the acids used in the preparation.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with DichloromethaneAcetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C1D-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Not Appthhalene is determined from the VOC analysis.
Org-020	Soll samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021/022/025	Soll samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC- MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/agetone and waters with dichloromethane and analysed by GC-MS/GC- MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Client Reference: 327 Boorowa Road Young NSW

Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	1: 920 - 20Livalues are assuming all contributing PAHs reported as 4-POL are actually at the PQL. This is the most conservative approach and can give fails provide the TBC actualization may not be present. 2: 920 - 20Livalues are assuming all contributing PAHs reported as 4-POL are zero. This is the least conservative approach and is more susceptible to fails engative TECs when PAHs that contribute to the TEC calculation are present to the PAHs is reported as 4-POL are zero. This is the least conservative approach and is more susceptible to fails engative TECs when PAHs that contribute to the TEC calculation are present to the town POL. 3. "ED Nati POL values are assuming all contributing PAHs reported as 4-POL are naft the stipulated POL. Hence a mid-point between the most can least conservative approaches allove. Note, the Total +ve PAHs POL is reflective of the lowest individual POL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-023	Soli samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (OS-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Coll samples are extracted with methanal and splied into water prior b analysing by purge and trap GC-MA. Water samples are analysed directly by purge and trap GC-MS. F1 = (C8-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Coll and Groupotater. Note: the Total +ve Xylene PQL is reflective of the lowest Individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive Indukal Xylenes.

Page | 9 of 18

Envirolab Reference: 374958 Revision No: R00

Page | 10 of 18

Client Reference: 327 Boorowa Road Young NSW

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soli						Du		Splike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			10/03/2025	[NT]			[NT]	10/03/2025	
Date analysed	-			11/03/2025	[NT]			[NT]	11/03/2025	
TRH Co - Co	mgikg	25	Org-023	<25	D(T)			[NT]	116	
TRH C ₈ - C ₁₀	maika	25	Org-023	<25	p(T)			[NT]	116	
Benzene	maika	0.2	Org-023	<0.2	DU1			[NT]	114	
Toluene	maika	0.5	Org-023	<0.5	NT			[NT]	116	
Ethylbenzene	maika	1	Org-023	<1	[NT]			[NT]	114	
m+p-xylene	maika	2	Org-023	<2	[NT]			[NT]	119	
o-Xylene	maika	1	Org-023	<1	[NT]			[NT]	121	
Naphthalene	mgikg	1	Org-023	<1	N (1)			[NT]	[NT]	
Surrogate aaa-Trifluorotoiuene	%		Org-023	103	D(L)			[NT]	113	

QUALITY CONTROL: svTRH (C10-C40) in Soil							plicate	Splite Recovery		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted				10/03/2025	NT]		[NT]	[NT]	10/03/2025	
Date analysed	-			12/03/2025	NU		[NT]	[NT]	12/03/2025	
TRH C10 - C14	maika	50	Org-020	<50	NT		[NT]	[NT]	99	
TRH C ₁₅ - C ₂₈	maika	100	Org-020	<100	NT]		[NT]	[NT]	97	
TRH C ₂₉ - C ₂₀	maika	100	Org-020	<100	NT]		[NT]	[NT]	100	
TRH >C10-Cto	maika	50	Org-020	<50	NT		[NT]	[NT]	99	
TRH >C ₁₀ -C _M	maika	100	Org-020	<100	NT]		[NT]	[NT]	97	
TRH >C ₃₄ -C ₄₀	maika	100	Org-020	<100	NU		[NT]	[NT]	100	
Surrogate o-Terphenyl	%		Org-020	90	NT		[NT]	[NT]	103	

Client Reference: 327 Boorowa Road Young NSW

Envirolab Reference: 374956 Revision No: R00

Page | 11 of 18 Envirolab Reference: 374956 Revision No: R00

Client Reference: 327 Boorowa Road Young NSW

QUALIT		Du	plicate		Splite Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			10/03/2025	NT]			[NT]	10/03/2025	
Date analysed				11/03/2025	NI			[NT]	11/03/2025	
Naphthalene	maika	0.1	Org-022/025	<0.1	NT)			[NT]	100	
Acenaphthylene	maika	0.1	Org-022/025	<0.1	NO			[NT]	[NT]	
Acenaphthene	maika	0.1	Org-022/025	<0.1	NT)			[NT]	108	
Fluorene	maika	0.1	Org-022/025	<0.1	NT)			[NT]	100	
Phenanthrene	maika	0.1	Org-022/025	<0.1	NT)			[NT]	102	
Anthracene	mgikg	0.1	Org-022/025	<0.1	NT]			[NT]	[117]	
Fluoranthene	maika	0.1	Org-022/025	<0.1	NT]			[NT]	104	
Pyrene	maika	0.1	Org-022/025	<0.1	NT)			[NT]	104	
Benzo(a)anthracene	mgikg	0.1	Org-022/025	<0.1	NT]			[NT]	[117]	
Chrysene	maika	0.1	Org-022/025	<0.1	NT]			[NT]	94	
Benzo(b_+k)fluoranthene	maika	0.2	Org-022/025	<0.2	NT)			[NT]	[177]	
Benzo(a)pyrene	mgikg	0.05	Org-022/025	<0.05	NT]			[NT]	140	
Indeno(1,2,3-c,d)pyrene	mgikg	0.1	Org-022/025	<0.1	NT]			[NT]	[177]	
Dibenzo(a,h)anthracene	mgikg	0.1	Org-022/025	<0.1	NT]			[NT]	[117]	
Benzo(g,h,l)perylene	mgikg	0.1	Org-022/025	<0.1	NT]			[NT]	[117]	
Surrogate p-Terphenyl-d14	%		Org-022/025	111	[NI]			[NT]	117	

Client Reference:	327 Boorowa	Road Young NSW

QUALITY CONTR	OL: Organo	chiorine F	Pesticides In soil			Du	plicate		Splike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[TM]
Date extracted	•			10/03/2025	NT			[NT]	10/03/2025	
Date analysed	•			11/03/2025	NU			[NT]	11/03/2025	
alpha-BHC	maika	0.1	Org-022/025	<0.1	DU1			[NT]	106	
нсв	maika	0.1	Org-022/025	<0.1	NT			[NT]		
beta-BHC	maika	0.1	Org-022/025	<0.1	NT]			[NT]	114	
gamma-BHC	maika	0.1	Org-022/025	<0.1	NT			[NT]		
Heptachior	maika	0.1	Org-022/025	<0.1	NT			[NT]	100	
deta-BHC	maika	0.1	Org-022/025	<0.1	NT			[NT]		
Aldrin	maika	0.1	Org-022/025	<0.1	DU1			[NT]	92	
Heptachior Epoxide	maika	0.1	Org-022/025	<0.1	NT			[NT]	116	
gamma-Chlordane	malka	0.1	Org-022/025	<0.1	NT			[NT]	[NT]	
alpha-chiordane	maika	0.1	Org-022/025	<0.1	p(T)			[NT]		
Endosulfan I	maika	0.1	Org-022/025	<0.1	DU1			[NT]		
pp-DDE	maika	0.1	Org-022/025	<0.1	NT			[NT]	108	
Dieldrin	maika	0.1	Org-022/025	<0.1	PU1			[NT]	122	
Endrin	maika	0.1	Org-022/025	<0.1	NI]			[NT]	108	
Endosulfan II	maika	0.1	Org-022/025	<0.1	NT			[NT]		
pp-000	maika	0.1	Org-022/025	<0.1	prij			[NT]	130	
Endrin Aldehyde	maika	0.1	Org-022/025	<0.1	PIT]			[NT]		
pp-DOT	maika	0.1	Org-022/025	⊲0.1	NI			[NT]		
Endosulfan Sulphate	maika	0.1	Org-022/025	<0.1	DU1			[NT]	130	
Methoxychior	maika	0.1	Org-022/025	⊲0.1	201			[NT]		
Mrex	maika	0.1	Org-022/025	<0.1	P(T)			[NT]		
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	124	p(T)			[NT]	125	

Envirolab Reference: 374956 Revision No: R00

Page | 13 of 18 Envirolab Reference: 374956 Revision No: R00

Page | 14 of 18

Client Reference: 327 Boorowa Road Young NSW

Client Reference: 32	7 Boorowa Road	Young NSW
----------------------	----------------	-----------

QUALIT		Du	Splke Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	•			10/03/2025	[NT]			[NT]	10/03/2025	
Date analysed	•			11/03/2025	NT			[NT]	11/03/2025	
Arocior 1016	maika	0.1	Org-021/022/025	⊲0.1	NT)			[NT]	[177]	
Arocior 1221	maika	0.1	Org-021/022/025	⊲0.1	ND			[NT]	[177]	
Arocior 1232	maika	0.1	Org-021/022/025	⊲0.1	[NT]			[NT]	[177]	
Arocior 1242	maika	0.1	Org-021/022/025	⊲0.1	NT			[NT]	[NT]	
Arocior 1248	maika	0.1	Org-021/022/025	<0.1	NT)			[NT]	[177]	
Arocior 1254	maika	0.1	Org-021/022/025	⊲0.1	NT			[NT]	109	
Arocior 1260	maika	0.1	Org-021/022/025	⊲0.1	[NT]			[NT]	[TM]	
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	125	NT			[NT]	118	

QUALITY CONTROL: Acid Extractable metals in soil						Dy	plicate	Splike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			10/03/2025	NT)			[NT]	10/03/2025	
Date analysed	-			10/03/2025	NI			[NT]	10/03/2025	
Arsenic	maika	4	Metals-020	-4	NT)			[NT]	117	
Cadmium	maika	0.4	Metals-020	⊲0.4	NU			[NT]	105	
Chromium	maika	1	Metals-020	<1	NT)			[NT]	107	
Copper	maika	1	Metals-020	<1	NO			[NT]	107	
Lead	maika	1	Metals-020	<1	NT]			[NT]	107	
Mercury	maika	0.1	Metals-021	⊲0.1	NU			[NT]	94	
Nickel	maika	1	Metals-020	<1	NT)			[NT]	106	
Zinc	maika	1	Metals-020	<1	NU			[NT]	107	

CONDITIONS OF THE RECOMMENDATIONS

- This is a Level 1 classification report generally in accordance with NSW EPA and NEPM guidance on contaminated site investigation and should be sufficient for a qualified person to ascertain the consequence of its findings.
- This site contamination report was completed by an experienced soil technician and does not make any allowance for the lot outside of the building envelope and house yard.
- The advice given in this report assumes that the test results are representative of the overall subsurface conditions. However, it should be noted that actual conditions in some parts of the site may differ from those found in the boreholes. If excavations reveal soil conditions significantly different from those shown in our attached Borehole Log(s), enviroseer should be consulted and excavations stopped immediately.
- Any sketches in this report should be considered as only an approximate pictorial evidence of our work. Therefore, unless otherwise stated, any dimensions or slope information should not be used for any building cost calculations and/or positioning of the building. Dimensions on logs are correct.

REPORT LIMITATIONS

The investigations addressed in this report are the minimum required to satisfy the statistical limits for a designated area. They are not intended nor designed to locate all possible ground conditions on the site. It is not possible to identify all possible ground conditions. Further, while anomalies are usually detected by site visit and historical searches, the potential for undisclosed hotspots of CoPC arising from undisclosed spillage or dumping cannot be entirely removed.

The advice and recommendations contained in this report are based on analyses obtained from the samples tested, and on the assumption that those test results are representative of the overall ground conditions of the entire building envelope and house yard. The actual conditions in some parts of the site might differ from those tested.

The scope and relevance of the advice provided in the report is subject to restrictions and limitations. enviroseer did not perform a complete assessment of all possible conditions, contaminants or circumstances that may exist on the site. If a service is not expressly indicated that means it has not been provided, and the reader should not assume that it has been. If a matter is not specifically addressed then enviroseer has not made a determination in relation to it, and the reader should not assume that it has.

Where data and information has been supplied by the client or a third party, the accuracy of the advice and recommendations in this report is dependent upon the accuracy of that data and information. enviroseer is not responsible for verifying the accuracy of data or information provided to it by third parties. enviroseer is not liable nor responsible for inaccurate advice provided upon reliance of incomplete or inaccurate data supplied by third parties.